A metro station or subway station is a train station for a rapid transit system, which as a whole is usually called a "metro" or "subway". A station provides a means for passengers to purchase Train ticket, board trains, and evacuate the system in the case of an emergency. In the United Kingdom, they are known as underground stations, most commonly used in reference to the London Underground.
Most stations are located underground, with entrances and exits leading up to ground or street level. The bulk of the station is typically positioned under land reserved for public or Urban park. Placing the station underground reduces the outside area occupied by the station, allowing vehicles and pedestrians to continue using the ground-level area in a similar way as before the station's construction. This is especially important where the station is serving Urban density urban precincts, where ground-level spaces are already heavily utilised.
In other cases, a station may be Elevated railway above a road, or at ground level depending on the level of the train tracks. The physical, visual and economic impact of the station and its operations will be greater. Planners will often take metro lines or parts of lines at or above ground where urban density decreases, extending the system further for less cost. Metros are most commonly used in urban cities, with great populations. Alternatively, a preexisting railway land corridor is re-purposed for rapid transit.
Metro stations typically provide ticket vending and ticket validating systems. The station is divided into an unpaid zone connected to the street, and a paid area connected to the train platforms. The ticket barrier allows passengers with valid tickets to pass between these zones. The barrier may be operated by staff or more typically with automated or gates that open when a transit pass is scanned or detected. Some metro systems dispense with paid zones and validate tickets with staff in the train carriages.
Access from the street to ticketing and the train platform is provided by stairs, , , and tunnels. The station will be designed to minimise overcrowding and improve flow, sometimes by designating tunnels as one way. Permanent or temporary barriers may be used to manage crowds. Some metro stations have direct connections to important nearby buildings (see underground city).
Most jurisdictions mandate that people with disabilities must have unassisted use of the station. This is resolved with elevators, taking a number of people from street level to the unpaid ticketing area, and then from the paid area to the platform. In addition, there will be stringent requirements for emergencies, with Emergency light, and Warning system installed and maintained. Stations are a critical part of the evacuation route for passengers escaping from a disabled or troubled train.
A subway station may provide additional facilities, such as Public toilet, and amenities for staff and security services, such as Transit police.
Control over ventilation of the platform is also improved, allowing it to be heated or cooled without having to do the same for the tunnels. The doors add cost and complexity to the system, and trains may have to approach the station more slowly so they can stop in accurate alignment with them.
Some metro systems, such as those of Naples, Stockholm metro, Moscow Metro, St. Petersburg, Tashkent Metro, Kyiv Metro, Montreal metro, Lisbon Metro, Kaohsiung and Prague Metro are famous for their beautiful architecture and public art. The Paris Métro is famous for its Art Nouveau station entrances; while the Athens Metro is known for its display of archeological relics found during construction. And the London Underground is famous for its oxblood red faïence blocks including pillars and semi-circular first-floor windows station buildings designed by Leslie Green.
However, it is not always the case that metro designers strive to make all stations artistically unique. Sir Norman Foster's new system in Metro Bilbao, Spain uses the same modern architecture at every station to make navigation easier for the passenger, though some may argue that this is at the expense of character.
Metro stations usually feature prominent poster and video advertising, especially at locations where people are waiting, producing an alternative revenue stream for the railway company.
Stations can be double-span with a single row of columns, triple-span with two rows of columns, or multi-span. The typical shallow column station in Russia is triple-span, assembled from concrete and steel, and is from 102 to 164 metres in length with a column spacing of 4–6 m. Along with the typical stations, there are also specially built stations. For example, one of the spans may be replaced with a monolithic vault (as in the Moskovskaya station of the Samara Metro or Sibirskaya of the Novosibirsk Metro). In some cases, one of the rows of columns may be replaced with a load-bearing wall. Such a dual hall, one-span station, Kashirskaya, was constructed to provide a convenient cross-platform transfer. Recently, stations have appeared with monolithic concrete and steel instead of assembled pieces, as Ploshchad Tukaya in Kazan.
The typical shallow column station has two vestibules at both ends of the station, most often combined with below-street crossings.
For many metro systems outside Russia, the typical column station is a two-span station with metal columns, as in New York City, Berlin, and others. In Chicago, underground stations of the Chicago 'L' are three-span stations if constructed with a centre platform.
In the Moscow Metro, approximately half of the stations are of shallow depth, built in the 1960s and 1970s, but in Saint Petersburg, because of the difficult soil conditions and dense building in the centre of the city this was impossible. The Saint Petersburg Metro has only five shallow-depth stations altogether, with three of them having the column design: Avtovo, Leninsky Prospekt, and Prospekt Veteranov. The first of these is less typical, as it is buried at a significant depth, and has only one surface vestibule.
The fundamental advantage of the column station is the significantly greater connection between the halls, compared with a pylon station.
The first deep column station in the world is Mayakovskaya, opened in 1938 in Moscow.
One variety of column station is the "column-wall station". In such stations, some of the spaces between the columns are replaced with walls. In this way, the resistance to earth pressure is improved in difficult ground environments. Examples of such stations in Moscow are Krestyanskaya Zastava and Dubrovka. In Saint Petersburg, Komendantsky Prospekt is an example.
The pylon station consists of three separate halls, separated from each other by a row of pylons with passages between them. The independence of the halls allows the architectural form of the central and side halls to be differentiated. This is especially characteristic in the non-metro Jerusalem–Yitzhak Navon railway station, constructed as a pylon station due to its 80-meter depth, where the platform halls are built to superficially resemble an outdoor train station.
Building stations of the pylon type is preferable in difficult geological situations, as such a station is better able to oppose earth pressure. However, the limited number of narrow passages limits the throughput between the halls.
The pylon station was the earliest type of deep underground station. One variation is the so-called London-style station. In such stations the central hall is reduced to the size of an anteroom, leading to the inclined walkway or elevators. In some cases the anteroom is also the base of the escalators. In the countries of the former USSR there is currently only one such station: Arsenalna in Kyiv. In Jerusalem, two planned underground heavy rail stations, Jerusalem–Central and Jerusalem–Khan, will be built this way. In Moscow, there were such stations, but they have since been rebuilt: Lubyanka and Chistiye Prudy are now ordinary pylon stations, and Paveletskaya-Radialnaya is now a column station.
In the Moscow Metro, typical pylon station are Kievskaya-Koltsevaya, Smolenskaya of the Arbatsko-Pokrovskaya line, Oktyabrskaya-Koltsevaya, and others.
In the Saint Petersburg Metro, pylon stations include Ploshchad Lenina, Pushkinskaya, Narvskaya, Gorkovskaya, Moskovskie Vorota, and others.
In the Moscow Metro there is only one deep underground single-vault station, Timiryazevskaya, in addition to several single-vault stations at shallow depth. In the Nizhny Novgorod Metro there are four such stations: Park Kultury, Leninskaya, Chkalovskaya and Kanavinskaya. In the Saint Petersburg Metro all single-vault stations are deep underground, for example Ozerki, Chornaya Rechka, Obukhovo, Chkalovskaya, and others. Most of the underground stations of the Washington Metro system are single-vault designs, as are all the single-line vaulted stations in the Montreal Metro. In Prague Metro, there are two underground stations built as single-vault, Kobylisy and Petřiny. In the Bucharest Metro, Titan station is built in this method.
In the Hong Kong MTR, examples of stations built into caverns include Tai Koo station on Hong Kong Island, Other examples in the city include Sai Wan Ho, Sai Ying Pun, Hong Kong University and Lei Tung stations.
|
|